
Detection and Mitigation of Malicious Modifications
on the Minnowboard Turbot

Bryan Koch, Bohuai Liu, Alejandro Mera
College of Computer and Information Science

Northeastern University, Boston, USA
{koch.b, liu.boh, mera.a}@husky.neu.edu

Austin Roach
Naval Sea Systems Command

Naval Surface Warfare Center, Crane, USA
austin.roach@navy.mil

Abstract—Malicious modifications affecting the hardware or
firmware of Commercial off-the-shelf (COTS) devices is far more
persistent than traditional software-based malware, and can be
hard to detect and remove once the devices are deployed in an
organization. This research analyze and propose cost effective
procedures to detect and mitigate malicious modifications associ-
ated to the supply chain of the Minnowboard Turbot, an open-
source COTS device. Findings demonstrate that screening hard-
ware with existing quality assurance techniques and installing
clean firmware on the device can successfully mitigate most of
supply chain risks. These procedures and risk analysis provide a
road map for identifying supply chain risk on other commercial
off-the-shelf devices.

I. INTRODUCTION

Large supply chains are cost-effective process of produc-
tion used by manufacturers to build commercial off-the-shelf
(COTS) devices. These cost savings can add security vulnera-
bilities in the form of malicious modifications to devices and
components. By modifying the hardware or firmware of a
device, an attacker can gain persistent access to a device by
maintaining their control at the lowest levels of functionality.
Embedded malware or counterfeit have typically been ad-
dressed with non-technical approaches, including vendor selec-
tion and strategic product sourcing. However, a comprehensive
firmware and hardware screening analysis, at reception of the
device, is normally discredited as cost and time prohibitive. In
this scenario, optimizing screening procedures is imperative in
order to assure the integrity of the devices, while reduced costs
and immediate availability are not affected.

The Minnowboard Turbot offers an adequate environment
to analyze characteristics of the supply chain, firmware and
hardware of an open-source device. This project will use the
open-source information of Minnowboard to identify potential
malicious modifications and state the difficulty related to
execute these changes. The final product of this project will
include a risk and vulnerability assessment comparing the
probability of an attack with the difficulty to perpetrate/detect
a modification. These results will be used to develop rec-
ommendations to confidently detect changes to the firmware
or hardware of Minnowboard Turbot upon receipt by the
customer. This proof-of-concept will provide a cost-effective
technical approach to decrease the risk introduced by complex
supply chains for COTS products. 1

1This work was supported in part by the National Science Foundation under
grant no. 1241668.

II. LITERATURE REVIEW

Supply chain risk analysis of COTS products can be
approached in many ways. Some researchers analyzed the
risk using the components during the software acquisition life
cycle[1]. This approach concentrates on threat modeling and
the attack surface at a procedural level. The benefits of this
approach are evident because it assures the availability, the
implementation, the delivery and use of secure characteristics
in the acquisition process of software. However, it does not
consider hardware modifications or low-level firmware screen-
ing techniques to verify the final product.

Two sets of security professionals and organizations are
known to be involved in embedded malware research. The
first set consists of organizations looking to exploit hardware,
including academic researchers, bug bounty hunters and highly
organized groups such as the National Security Agencys Office
of Tailored Access Operations (TAO) and other organiza-
tions with significant resources and a determined mission[2].
The second set consists of digital forensics specialists, who
normally begin their investigations in reaction to malware
detection involving ongoing operations. Although there is a
major gap in efforts to proactively find embedded malware,
any attempt to find malware in the acquisition phase would
require both an understanding of historically successful mal-
ware deployments and the forensic process used to detect and
remove the compromising modification.

In [3], researchers successfully used static analysis, fuzzy
hashing and correlation techniques to find malware and vulner-
abilities in the firmware of several embedded systems, iden-
tifying serious risks with the use of these devices. The main
contribution of this research is the signature and extraction
algorithms that are available as a web service to analyze
firmware. The caveat of this research is the use of a blacklisting
schema (signatures, hashes and default configurations); there-
fore, new malware or vulnerabilities that are not blacklisted
cannot be detected by this approach.

In [4], the author describes a method that automatically
maps and explores the firmware/software architecture of COTS
devices. This is one of the most advanced approaches that can
help to prioritize actions to secure or defend the system ac-
cording to states and conditions. The spotted drawback of this
research is the method of evaluation of the attacks, which only
consider each scenario as a Boolean Satisfiability Problem. In
this case, the evaluation of each scenario does not consider the
impact or feasibility of each attack. For instance, the author of

this research suggests to include other characteristics to model
the threats. Our research will complement this work providing
levels of difficulty and technical knowledge as factors of
evaluation.

The development of Binwalk, an open-source firmware
analysis tool, is one of the greatest contributions in support of
firmware analysis. Binwalk has been used to extract firmware
from COTS devices, such as routers[5] and ARM devices [6].
These research endeavors provide great information on some
of the complexities associated with firmware analysis.

In order to support a wider range of applications for its
devices, Intel has also released tools specifically for firmware
customization such as Intel’s Firmware Engine [7]. This tool
has enabled many new applications of Intels products, but has
also exposed new potentials for vulnerability discovery and
malware development. For instance, Wojtczuk and Tereshkin
used Intels firmware tools to develop malware embedded
directly into an Intel processors firmware [8].

The primary focus of academic research into embedded
malware has been into detection and mitigation. The problem
of mitigation in the supply chain largely deals with territorial
issues throughout the chain. In order to maintain economies of
scope, the producer of a finished product relies on a complex
network of suppliers down to the raw material level in order
to source quality components within cost constraints[9].

When dealing with computers, network devices and elec-
tronic components, updates to firmware add a post-acquisition
threat vector to the supply chain. A malicious party could
modify the firmware to add malicious payloads into programs
through the compiler [10]. In the last year, Intel released
and corrected a vulnerability to its Driver Update Utility
which exposed this exact problem[11]. The Intel Driver Up-
date Utility sent firmware updates to customers using an
unencrypted HTTP connection. In this scenario, a man-in-
the-middle (MITM) attack would be sufficient to introduce
undetectable malware directly into the firmware controlling an
Intel processor or network interface. This threat recognizes the
need not only to confirm that the firmware is free of malicious
modifications, but also that the firmware is hardened against
unauthorized modifications once deployed.

III. PROBLEM STATEMENT

This project focuses on detecting malicious modifications
on COTS devices. It assumes that modifications can be intro-
duced in any point of the supply chain by different threat actors
having basic technical skills or almost unlimited resources
and knowledge. Additionally, it considers that screening pro-
cedures are expensive and not economically feasible when
system designers have to deal with resource constraints. This
project will propose an outcome where a less sophisticated
technician can adequately detect malicious modifications using
open source documentation, a minimal labor, equipment and
technical knowledge. The technicians advantage comes from
the expectation that the received microcomputer should match
the factory open-source specifications. Our proposed solution
will take advantage of these specifications to white list the
hardware and firmware of the Minnowboard Turbot. This
specific analysis of this board will provide a template for
determining vulnerabilities to similar COTS microcomputers,

Device Description
Minnowboard Turbot Research target
Power Supply 4A 5V Provides power to Minnowboard
Micro HDMI cable Connects Minnowboard to a monitor
HDMI Monitor Display device
SPI HOOK USB to SPI and RS232 interface
SD card, Keyboard, mouse, USB hub PC accessories
Workstation with Linux OS Kali Linux containing Binwalk and FlashROM

TABLE I. LAB EQUIPMENT

and developing similar screening procedures for detecting
modifications and mitigating risk on receipt of a product from
a supplier.

This project consists of three major milestones in order to
provide a risk analysis of the supply chain of Minnowboard
Turbot. These milestones are as follow:

• Develop an understanding of how hardware and
firmware can be modified to compromise the integrity
of the Minnowboard Turbot through its supply chain.

• Perform a risk and vulnerability assessment of the
Minnowboard Turbot, considering the probability of
an attack occurring and the difficult of detection by
the customer.

• Develop a screening procedure for detecting and miti-
gating modifications of the hardware and firmware of
a Minnowboard Turbot.

IV. METHODS AND PROCEDURES

This project requires a lab environment to analyze the
firmware of the Minnowboard and industry quality assurance
(QA) procedures and open source documents for a theoretical
analysis of the hardware. These analyses will be used to
develop a comprehensive supply chain risk assessment and a
detection procedure to mitigate risk on receipt of a Minnow-
board from a vendor.

A. Firmware Analysis

The lab environment configured for this project is basically
the ”hardware setup” described on the official documentation
of the Minnowboard [12]. Our specific implementation adds
a redundant configuration where two independent Minnow-
boards (MB1 and MB2) are tested and compared between
each other. This double configuration allows us to verify if
findings are constant across different boards provided by the
same vendor. TABLE I describes the elements of our lab
environment.

1) Read/Write with SPI Hook: The SPI Hook is a USB
dual function utility board that includes a SPI flashing tool
that reads, writes, or erases the SPI Flash located on the
Minnowboard Turbot, and a virtual RS232 serial port for
communicating with the Minnowboard MAX/Turbot [13]. The
SPI Hook uses the open source software FlashROM, a utility
application for identifying, reading, writing, and erasing flash
chips. The SPI Hook connects the Minnowboard Turbot to
our workstation, enabling FlashROM to read and write the
firmware. This procedure involved first reading the firmware
from each board for further analysis. Figure 1 depicts a schema
of the elements and connections of our lab environment.

Fig. 1. Connections between Laptop, SPI Hook and Minnowboard Turbot

2) Write Firmware Using UEFI Commands: This proce-
dure uses the command line interface provided by the standard
firmware of the Minnowboard and a USB flash drive which
contains the firmware to be flashed. To write the firmware:

• Connect the Minnowboard to a monitor using a Micro
HDMI cable and boot the board.

• Check the version of firmware (FW1) in Minnow-
board.

• Perform a write operation with a different version of
firmware (FW2) from a USB flash drive using UEFI
commands as described on documentation [12].

• Reboot and verify the new version of the firmware
(FW2) is installed.

3) Read/Write Firmware From Operating System: This
technique was not included in the Minnowboard Turbot doc-
umentation, but is mentioned as an option in the FlashROM
documentation. This procedure requires booting the Minnow-
board Turbot using a supported operating system, such as
Ubuntu 16.04 [14], installed on a bootable USB flash drive.
After installing and booting Ubuntu on the Minnowboard,
FlashROM can access the firmware of the Minnowboard and
write a different version of the firmware. During the next boot
operation, the new version will be installed if properly written
to the firmware memory.

4) Firmware Screening Methods using Hashes: Hash func-
tions are often used to map data to a unique fixed-length
string and are commonly used for integrity checks on binary
files. Using hash functions to screen the entire firmware is
an effective method to detect any modification, but it is not
useful to determine if that modification corresponds to data
(dynamic) or code (static) sections of the firmware. In this
scenario, finding critical segments of the firmware is a must
to avoid false positives. Using the firmware extracted with the
SPI-Hook (FW1 and FW2) and the ”clean” version from Intel’s
website (FW0), critical segments on the images with BinWalk
are located. To determine the critical parts of a firmware, the
analysis will be performed as follows:

• Derive the firmware of MB1, store as FW1;

• Boot the MB1 into BIOS and change a configuration
parameter (for instance, boot sequence was changed).

• Turn off MB1, use SPI-Hook to read the firmware,
store as FW1.1

• Use Binwalk to extract the firmware and compare
the hash value of each segment in FW1.1 with the
corresponding segments in FW1 to determine which
segments include data of configurations and which
segments correspond to code.

5) Preventing modifications of firmware: To perform a
modification using SPI Hook, the attacker must have physical
access to the Minnowboard Turbot. Therefore, restricting the
physical access can significantly mitigate this risk. Since this
technique bypasses the processor and writes directly to the
flash memory chip, it cannot be otherwise disabled. How-
ever, modification from using UEFI commands and a USB
flash drive or using FlashROM from a supported operating
system is preventable. By changing the SPI Flash Descriptor
in the firmware, the system will deny any software-based
modification. SPI Flash Descriptor is a parameter in firmware
that can enable or disable firmware modification from UEFI
commands and OS tools [7]. The following procedure modify
the default configuration of the Minnowboard Turbot to protect
the firmware:

• Configure the development environment and download
the source tree to build the firmware of the Minnow-
board Turbot according to Intel’s documentation [7].

• Compile the firmware disabling CPU/BIOS access to
SPI Flash Descriptor Region, store it as FW3.

• Use SPI Hook to write FW3 to the Minnowboard
turbot.

• Reboot the system and attempt to read/write the
firmware using the UEFI commands and OS tools
(FlashROM), previously described.

• Verify that reading the firmware is possible, but writ-
ing a new one is not allowed.

B. Hardware Analysis

Detection and screening of malicious hardware requires
different levels of effort and accuracy. The most effective
method to conduct a hardware risk analysis requires special-
ized training with hardware inspection equipment. Targeted
exploitation requires intimate analysis of the proprietary func-
tionality of each hardware component to completely reverse-
engineer this board. Instead of focusing on identifying ac-
tual vulnerabilities, generic hardware risk analysis for the
Minnowboard Turbot hardware will focus on critical com-
ponents/vendors, and the cost and accuracy to detect any
modification of the board. This include,

1) Bill of materials: The bill of materials, included in the
open source documentation, is a rich source of information
related to the supply chain of the Minnowboard Turbot. Passive
components such as capacitors and resistors are not a means
of advanced threats, because the attacker has no control on
triggering an attack using these components. On the other
hand, active components such as Integrated Circuits represent

Procedure Cost Effectiveness
Automated X-Ray Inspection (AXI) $ 2.021 82.0%
Automated Optical Inspection (AOI) $ 1.516 58.0%
Integrated Circuit Test (ICT) $ 36.226 65.0%
Functional Test (FT) $ 5.383 31.0%
System Test $ 25.573 98.3%

TABLE II. INDUSTRY QA PROCEDURES [15]

a real threat, where highly technical and expensive attacks can
be perpetrated.

2) Quality assurance procedures: Common industry QA
procedures for printed circuit boards (PCBs) are the proven
method for detecting changes to hardware [15]. The procedures
shown in TABLE II will be used for comparison in order to
determine the most cost effective procedure for detecting and
mitigating any hardware modifications to the Minnowboard
Turbot.

Each of these procedures will be assigned a quantitative
cost and likelihood of detection for each method based on
industry data. Estimates from actual companies and previous
research to determine the cost to perform each procedure
on an individual board. This past research will approximate
the effectiveness of each procedure at detecting modifications
based on specifications similar to the Minnowboard Turbot.

C. Risk Assessment

The firmware and hardware analysis results provide de-
tailed information on potential risks introduced throughout
the supply chain. These findings and results from past work
combine to create a comprehensive list of each attack vector
throughout the supply chain. This data will be segmented using
using Schneier’s Attack Trees methodology [16] segmented by
supply chain phase[17] tailored to the Minnowboard Turbot.

D. Procedure Development

The firmware and hardware analysis results comprise the
several successful and unsuccessful approaches to detection of
modifications added throughout the supply chain. Assembling
these procedures in the correct order results in a highly effec-
tive procedure for detecting malicious modifications within the
Minnowboard Turbot’s firmware or hardware. This procedure
will assume the end-user has a known good version of the
hardware and firmware to ”white-list” Minnowboard’s received
from a supplier (open-source documentation). This procedure
will provide a repeatable, adaptable method for mitigating
supply chain risks of on similar COTS devices.

V. RESULTS

Through our study, we have used open-source documen-
tation of the Minnowboard Turbot. This fact, warranties that
our methods are repeatable. However, multiple contributions
of the open-source community could slightly modify some of
the results, specially those that depend on source code and tool
chains (firmware). This section will break down our findings
maintaining an adequate level of detail, where our previous
statement could be applicable.

A. Firmware

1) Analysis of Source Code and Library Dependencies:
The official firmware of the Minnowboard is based on the EDK
II (Enhanced Development Kit) project of the Tianocore.org
community. This community supports a firmware development
environment that uses the open source components of Intels
implementation of UEFI and some proprietary precompiled li-
braries that initializes the Intel Atom processor. Principally, the
EDK II environment includes a set of libraries (OpenSSL and
ACPI specifications) and building tools that process the content
of firmware, which includes configuration files, compiling
scripts, compilers, binary layout definitions and intel precom-
piled objects. The EDK II project comprises complementary
projects to support a UEFI 2.0 shell, FAT12/16/32 file system
drivers, Coreboot payload (a replacement of proprietary BIOS),
driver development for independent hardware vendors (IHV),
and a security package which implements Trusted Platform
Module (TPM), User Identification (UID), Secure Boot and
authenticated variable.

2) Vanilla Firmware Extraction and Analysis: The size of
the firmware images FW1 and FW2 extracted from MB1 and
MB2, is 8388608 bytes. This size is the same of the firmware
downloaded from Intel (FW0) and matches the capacity of
the serial flash memory chip W25Q64V implemented in the
Minnowboard Turbot (64 Mbit). FW1 and FW2 are x64
architecture compatible, which corresponds to the standard
retailer specification for this board. The hash sums of the
complete firmware images are different for all three versions
(FW0, FW1 and FW2).

3) Binwalk Signature Analysis and File Extraction: The
signature scanning of Binwalk tool determined that Minnow-
boards firmware blocks are LZMA compressed data, Microsoft
executable portable (PE) and encrypted data that uses blowfish-
448 in cipher block chaining (CBC) mode. The offsets and size
of each block are constant between the firmware extracted from
the Minnowboards (FW1 and FW2), but these characteristics
differ from Intels firmware (FW0). For instance, the size and
offset of the LZMA block are 4456464 bytes and 0x600078 on
FW1 and FW2; whereas the size and offset are 5120016 bytes
and 0x510078 for the same block on Intels firmware. A com-
plete and detailed report of the signature scanning is included
on Appendix I. The analysis of the LZMA block determined
that it contains a private RSA key, six x.509 certificates and
many PE files. According to EDK II documentation, these
certificates are included as part of the Attribute Certificate
Table, which contains contiguous certificate entries that are
used for signing verification and secure boot [18]. The content
and internal offsets of this block is the same on FW1 and
FW2, but it differs from FW0, which contains alike keys and
certificates on different offsets. Consequently, the hash sum of
the LZMA block is the same for FW1 and FW2.

4) Binwalk Entropy Analysis: The entropy analysis of the
firmware demonstrated that some blocks are empty, therefore
they have no information or they correspond to consecutive and
predictable unused memory space, i.e. 0x00 and 0xFF values.
Consequently, the block with the highest entropy (information
content) is the compressed LZMA, whose entropy and offset
is depicted in Figure 2 and 3 for FW0 and FW1 respectively.

Fig. 2. Entropy Analysis of Intel Firmware (FW0)

Fig. 3. Entropy Analysis of Extracted Firmware (FW1)

5) Toolchain Analysis: EDK II is a framework that aims to
be a cross platform development environment. Therefore, it is
compatible with different compilers, assemblers and operating
systems, such as Windows and Linux. The Windows based
environment can use the C compiler included in Visual Studio
.NET 2008 to 2013 and the ACPICA ASL compiler Version
20141107. For the Linux environment it requires GCC 4.6.X,
the latest ACPICA UNIX ASL compiler, flex 2.5.4 or greater
and bison version 2.4.1 or greater. The extensive compatibility
of EDK II offers flexibility for developers, however different
tool-chains produces heterogeneous binaries, whose function-
ality is similar but cannot be verified using hashes. These
differences are due to compiler optimization, versions and
architecture. These results used the current source code and
a Windows 10 X64 development environment with VS2013
to build and analyze a compiled version of Minnowboard
firmware (FW3). Analysis of FW3 showed the same offset
from FW0, but a different LZMA block size. Factory images
FW1 and FW2 each had unique LZMA block sizes and offsets.

6) Toolchain UEFI/BIOS Configuration and Memory Lay-
out: The Minnowboard UEFI, built with EDK II, is a config-
urable and rich featured interface, which is similar to commer-
cial and closed source products shipped on modern personal
computers. This environment includes a shell and tools to
configure security characteristics, boot sequence, language,
connected devices, etc. Our analysis found that parameters and
configurations of the Minnowboard are stored in some sections
of the flash chip reserved as variables or NVRAM (non-volatile
RAM). For instance, the activation of the FTPM (firmware-

based TPM) in the Minnowboard changed the firmware. This
proved extracting the firmware from MB1 again and verifying
that the hash is not the same as the original version (FW1),
however the LZMA area is not altered and the hash of this
specific block is the same. According to EDKII documentation,
the flash layout is defined in the *.fdf files, which are specific
for each platform, i.e. Minnowboard, Beagleboard, etc. The
EDK II includes specific and separated configuration files for
Windows and Linux tool-chains. This specific configuration
is due to different compiler optimizations, which produce
binaries of different sizes that requires different amounts of
memory to be accommodated [18]. The analysis of these files
showed that, during the building process of the firmware, EDK
II uses those files to define base address, size, block size,
number of blocks and offsets for microcode, recovery and non-
volatile regions of the firmware.

B. Hardware Analysis Results

1) Bill of Materials: The Minnowboard Turbot, version
x205, is a MinnowBoard MAX-compatible derivative board
designed and manufactured by ADI Engineering[19].The Min-
nowboard Turbot’s bill of materials has 811 components,
including 687 resistors and capacitors. Although changes to
the lower level components could also indicate malicious
modifications, the most concerning changes would be within
one of integrated circuits on the board. The critical components
include the Atom processor, SDRAM, flash SPI memory,
system power control, switching regulator, HDMI companion,
Ethernet interface and thermistor. Some of these components
have internal processing capabilities and a high level of in-
tegration; therefore, they can be target for tampering or high
technical attacks.

2) Quality assurance procedures: In order to calculated
cost for each procedure, similar results used in other schol-
arly works provide the closest estimation without manually
performing each of these tests. Teradyne, an automated test
equipment supplier, provided costs and effectiveness for sev-
eral test which assumed costs of $150,000 for AOI and
$550,000 for AXI with annualized costs over 5 years of
$30,000 and $110,000 respectively[15]. The board used in this
with 400 components and 4,000 solder joints for a total of
4,400 fault opportunities. For the purposes of estimated costs
and effectiveness, this research assumes that the current costs
and effectiveness of these tests on a Minnowboard Turbot are
similar to those of the subject board from the sourced previous
work.

Based on these calculations, the use of AXI and AOI has
the highest combined effectiveness (92.44%) with the least
cost ($ 3.54). Other previous research supports the use of
AXI and AOI together for maximum cost effectiveness. An
early study of PCB detection techniques concluded that as the
complexity of board increases, x-ray inspection should be used
instead of optical or visual inspection techniques. However, the
same study also concluded that AXI and AOI should be used
together for test batches with high complexity and high volume
of boards to test. This research validates our above conclusion
of AXI and AOI being the most cost effective combination of
procedures to detect modifications.

Other industry studies also recommend the use of both AOI
and AXI for detecting modifications and defects on printed

Fig. 4. Cost & Effectiveness of QA Procedure Combinations

Fig. 5. AOI vs. AXI[20]

circuit boards [20]. These results validate QA measures as
an effective method for detecting modifications to hardware.
For the purposes of reducing supply chain risk, manufacturing
defects and embedded malware are both undesirable states for
received hardware and should not be cleared for use. This
hardware should be returned to the supplier or sent for further
forensic analysis.

VI. DISCUSSION

This research has analyzed the open source documents of
the Minnowboard, the characteristics of the EDK II framework,
methods to read/write the firmware from/to the board, and
QA procedures which can be used to detect modifications to
hardware. This investigation has lead to a detail procedure for
detecting modifications to the Minnowboard Turbot and to a
full risk assessment on the Minnowboard Turbot supply chain.
Because ADI Engineering and Intel incorporated security into
the supply chain considerations when developing the Minnow-
board Turbot, this project was able to make assumptions and
risk estimates based on those decisions. These assumptions
assume that the purchasing party will be able to possess a
”known good” version of both the hardware and firmware prior
to receiving bulk shipments. Part of this assumption is due to
the intrinsic characteristics of an open-source project, which
is susceptible to audit and deep analysis.

Potential future work should consider how to determine
modified hardware or firmware when the exact characteristics
based on the manufacturer’s specifications can not be trusted
or are not disclosed. Dynamic and static analysis of firmware
for malicious signatures is one potential direction to pursue
in order to find malware embedded into firmware. Tools, such
as VirusTotal, can find common signature patterns for specific
exploits used embedded within a device’s firmware [21], a
reverse engineering project into known compromised hardware
would provide missing data on how to detect malicious hard-
ware modifications.

VII. CONCLUSION

This project proves modifications to the firmware and hard-
ware of Minnowboard Turbot can be detected on receipt from
a vendor. Due to the complexities and costs associated with
verifying that no unauthorized modifications have been made
to the firmware, using an SPI hook to write a clean firmware
image to the device is the recommended method avoiding the
risk. The risk associated with hardware modifications cannot
be so easily avoided. However, using both AOI and AXI
with a known ”clean” version of the hardware will maximize
the likelihood of detection while minimizing the overall cost.
These techniques can be used to detect firmware and hardware
modifications on receipt from a supplier. Furthermore, the
complete supply chain risk analysis of the Minnowboard
Turbot shows that all risks can be detected with these efforts,
providing a template for further studies on other COTS device
risk assessments.

REFERENCES

[1] R. J. Ellison and C. Woody, “Supply-chain risk management: Incorpo-
rating security into software development,” in System Sciences (HICSS),
2010 43rd Hawaii International Conference on. IEEE, Conference
Proceedings, pp. 1–10.

[2] G. Greenwald, No place to hide : Edward Snowden, the NSA, and the
U.S. surveillance state, first edition. ed. New York : Metropolitan
Books/Henry Holt, 2014.

[3] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale
analysis of the security of embedded firmwares,” in 23rd USENIX
Security Symposium (USENIX Security 14), Conference Proceedings,
pp. 95–110.

[4] S. Jilcott, “Securing the supply chain commodity it devices by au-
tomated scenario generation,” in Technologies for Homeland Security
(HST), 2015 IEEE International Symposium on. IEEE, Conference
Proceedings, pp. 1–6.

[5] F. Eric, M. Schulte, W. Weimer, and Stephanie, “Repairing
cots router firmware without access to source code or test
suites: A case study in evolutionary software repair.” in
Proceedings of the Companion Publication of the 2015 Annual
Conference on Genetic and Evolutionary Computation. Association
of Computing Machinery, Conference Proceedings. [Online].
Available: http://www.cs.virginia.edu/ weimer/p/weimer-netgear-repair-
preprint.pdf

[6] Z. Ruijin, Y. an Tan, Q. Zhang, Y. Li, and J. Zheng, “Determining
image base of firmware for arm devices by matching literal pools,”
Digital Investigation, vol. 16, pp. 19–28, 2016.

[7] “Minnowboard maxturbot 0.94 uefi firmware open source release notes,”
”https://firmware.intel.com/sites/default/files/MinnowBoard MAX-
Rel 0 94-ReleaseNotes.txt”, 2016.

[8] “Attacking intel bios,” ”https://www.blackhat.com/presentations/bh-
usa-09/WOJTCZUK/BHUSA09-Wojtczuk-AtkIntelBios-SLIDES.pdf”,
2009.

[9] S. Chopra and P. Meindl, Supply Chain Management: Strategy,
Planning, and Operation. Prentice Hall, 2001. [Online]. Available:
https://books.google.com/books?id=gd22AAAAIAAJ

[10] O. Lysne, K. J. Hole, C. Otterstad, . Ytrehus, R. Aarseth, and J. Tellnes,
“Vendor malware: Detection limits and mitigation,” Computer, vol. 49,
no. 8, pp. 62–69, 2016.

[11] Core Security. (2016) Intel driver update utility mitm. [Online].
Available: https://www.coresecurity.com/advisories/intel-driver-update-
utility-mitm

[12] “Hardware setup of minnowboard,” ”http://wiki.minnowboard.org/”,
2016.

[13] “Spi hook,” ”http://www.tincantools.com/”, 2016.
[14] “Download ubuntu desktop,” ”https://www.ubuntu.com/download/desktop”,

2016.

[15] P. Edelstein, “Comparing costs and roi of aoi and axi,” Electronics
Production and Test Europe, vol. 1, no. 2, 2007. [Online]. Available:
https://www.smtnet.com/library/files/upload/EPPEuropeArticle.pdf

[16] B. Schneier, “Attack trees,” Dr. Dobbs journal, vol. 24, no. 12, pp.
21–29, 1999.

[17] D. Shackleford, “Combatting cyber risks in the supply chain,” SANS.
org, 2015.

[18] “Edk ii faq,” ”https://github.com/tianocore/tianocore.github.io/wiki/EDK2015.

[19] “Minnowboard turbot,” ”http://wiki.minnowboard.org/MinnowBoard Turbot”,
2016.

[20] S. Oresjo, “When to use aoi, when to use axi, and when to use both,”
Nepcon West, December, pp. 4–6, 2002.

[21] y. Virus Total, “Virustotal-free online virus, malware and url scanner.”

